以太是古希腊哲学家亚里士多德所设想的一种物质。是物理学史上一种假想的物质观念,其内涵随物理学发展而演变。“以太”一词是英文Ether或Aether的音译。古希腊人以其泛指青天或上层大气。在亚里士多德看来,物质元素除了水、火、气、土之外,还有一种居于天空上层的以太。在科学史上,它起初带有一种神秘色彩。后来人们逐渐增加其内涵,使它成为某些历史时期物理学家赖以思考的假想物质。
以太是古希腊哲学家亚里士多德所设想的一种物质。19世纪的物理学家,认为它是一种曾被假想的电磁波的传播媒质。但后来的实验和理论表明,如果假定“以太”的不存在,很多物理现象可以有更为简单的解释。
中文名以太
Luminiferous aether、aether 或 ether
乙太,光乙太
科学幻想
亚里士多德
17世纪
物理,天文
以太的定义
以太(Ether、Aether)、阿卡夏(Akashic)。专指:组成空间的意识流、灵界创造物质现象界时所创造的第一种最基本元素。物质现象界的万物生存在其内。称为五大基本元素之第一,主声音。也是四大基本元素的创造者。亦经常作为“空间”的代名词。在恒星与恒星之间,灵眼可观察到空间是由一种暗红色的流体状意识流所组成,形成一种形状较稳定的空间流体,此乃以太。
历史
以太是一个历史上的名词,它的涵义也随着历史的发展而发展。
在古希腊,以太是古希腊哲学家亚里士多德所设想的一种物质。是物理学史上一种假想的物质观念,其内涵随物理学发展而演变。“以太”一词是英文Ether或Aether的音译。古希腊人以其泛指青天或上层大气。在亚里士多德看来,物质元素除了水、火、气、土之外,还有一种居于天空上层的以太。在科学史上,它起初带有一种神秘色彩。后来人们逐渐增加其内涵,使它成为某些历史时期物理学家赖以思考的假想物质。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的R.笛卡尔是一个对科学思想的发展有重大影响的哲学家。他最先将以太引入科学,并赋予它某种力学性质。在笛卡尔看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。因此,空间不可能是空无所有的,它被以太这种媒介物质所充满。以太虽然不能为人的感官所感觉,但却能传递力的作用,如磁力和月球对潮汐的作用力。
后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由R.胡克首先提出的,并为C.惠更斯所进一步发展。在相当长的时期内(直到20世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。由于光可以在真空中传播,因此惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象。
17世纪时,法国数学家R.笛卡尔建立了以太旋涡说。他以此解释太阳系内各行星的运动。笛卡尔的以太观念,既有助于推翻亚里士多德体系,又为后来物理学发展提供了一幅可供想象的空间媒介物。荷兰C.惠更斯和英国R.胡克提倡光的波动说,他们都假定空间具有无所不在的以太,以此作为波动媒介。这时期的以太便称为“发光以太”或“光以太”。牛顿虽然在光学上提倡射流说(微粒说),但他也借助以太的稀疏和压缩来解释光反射和折射,甚至假想以太是造成引力作用的可能原因。整个17世纪是发光以太的重要历史时期。
牛顿虽然不同意胡克的光波动学说,但他也像笛卡尔一样反对超距作用并承认以太的存在。在他看来,以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛顿也认为以太可以传播振动,但以太的振动不是光,因为光的波动学说(当时人们还不知道横波,光波被认为是和声波一样的纵波)不能解释今天称为的光的偏振现象,也不能解释光的直线传播现象。
18世纪是以太论没落的时期。由于法国笛卡尔主义者拒绝引力的平方反比定律而使牛顿的追随者起来反对笛卡尔哲学体系,连同他倡导的以太论也在被反对之列。随着引力的平方反比定律在天体力学方面的成功以及探寻以太未获实际结果,使得超距作用观点得以流行。光的波动说也被放弃了,微粒说得到广泛的承认。到18世纪后期,证实了电荷之间(以及磁极之间)的作用力同样是与距离平方成反比。于是电磁以太的概念亦被抛弃,超距作用的观点在电学中也占了主导地位。
18世纪,波动说被放弃,微粒说占据上风。同时,万有引力被认为是超距作用的。整个18世纪,人们以为空间是空虚的。以太观念处于沉寂时期。
19世纪,科学家逐步发现光是一种波,而生活中的波大多需要传播介质(如声波的传递需要借助于空气,水波的传播借助于水等)。受经典力学思想影响,于是他们便假想宇宙到处都存在着一种称之为以太的物质,而正是这种物质在光的传播中起到了介质的作用。
19世纪,以太论获得复兴和发展,首先是从光学开始的,这主要是T.杨和A.菲涅耳工作的结果。杨用光波的干涉解释了牛顿环,并在实验的启示下于1817年提出光波为横波的新观点(当时对弹性体中的横波还没有进行过研究),解决了波动说长期不能解释光的偏振现象的困难。
以太首先是个哲学概念,而物理学家总是期望将之变成物理学概念。当一切寻找以太粒子的努力失败后,人们抛弃了以太说。但是事实上,抛弃的仅是发现以太粒子的希望,以太这个哲学概念更加根深蒂固,大多数人认可了微观结构存在的可能性。
19世纪的物理学家,认为它是一种曾被假想的电磁波的传播媒质。但后来的实验和理论表明,如果不假定“以太”的存在,很多物理现象可以有更为简单的解释。也就是说,没有任何观测证据表明“以太”存在,因此“以太”理论被科学界抛弃。
以太说的否定
以太说的否定主要有3点:
1:以太存在难以想象。根据当时的以太学说:以太是一种刚性的粒子,十分地坚硬,比最硬的物质金刚石还要硬上不知多少倍。同时又是如此稀薄,以致物质在穿过它们时几乎完全不受到任何阻力,“就像风穿过一小片丛林”(托马斯·杨语)。然而事实是从来就没有任何人能够看到或者摸到这种“以太”,也没有实验测定到它的存在,如果通过麦克斯韦方程来理解电磁波‘‘光”,那么以太非常柔软,因为介质密度越小,折光率越低光(电磁波)速越快一般情况下,真空中光速为c(2.99792×10^8m⁄s),空气中非常接近于c,在水中约为3⁄4c,玻璃中约为2⁄3c。星光穿越几亿亿公里的以太来到地球,然而这些坚硬无比的以太却不能阻挡任何一颗行星或者彗星的运动,哪怕是最微小的灰尘也不行!因此许多科学家怀疑以太的存在。
不过以现在的观点看来也不算什么,现代物理认为宇宙中存在着暗物质,暗能量。按当时的观点来看也是难以理解的。
2:迈克尔逊-莫雷实验的零结果。以太说认为以太是光媒介质,那么地球在以太中运动,在地球上各个方向的光速与地球运动应该符合伽利略变换,即C+V和C-V。迈克尔逊-莫雷实验正是测量C+V和C-V中的V,得到结果为零。这一结果让当时的科学家不解。
由于迈克尔逊-莫雷实验是光的干涉实验,属光速测量的二阶实验。所以实验结果并不能直接证明光速变化为零。历史上对迈克尔逊-莫雷实验还有其它的解释。爱尔兰物理科学家费兹杰惹,荷兰物理科学家洛仑兹就曾认为是量杆在以太中运动,组成量杆的原子和电子之间的距离变短了。而这个观点是符合麦克斯韦电磁方程组的。
3:根据麦克斯韦方程组推导得出光速为常数,其中ε0是真空电容率,μ0是真空磁导率。这两个量当时是通过实验测量出来的,被认为是常数。
真空电容率和真空磁导率被认为是常数,有不合理的地方。它的逻辑是这样的:因为真空中什么都没有,所以真空电导率和真空磁导率是常数。我们可以用相同的逻辑换个思路:因为真空中有以太,地球在以太中运动,所以地球上真空电导率和真空磁导率不同方向有差异。
在19世纪末20世纪初,虽然还有些科学家努力拯救以太,但在1905年爱因斯坦大胆抛弃了以太说,认为光速不变是基本的原理,并以此为出发点之一创立了狭义相对论。爱因斯坦在《论动体的电动力学》一文的前言中说:“‘光以太’的引用将被证明是多余的。” 人们从此接受了电磁场本身就是物质存在的一种形式的概念,而场可以在真空中以波的形式传播。随后量子力学的建立使人们认识到粒子与波实为一个硬币的两面。那种仅仅把波动理解为某种媒介物质的力学振动的狭隘观点已完全被冲破。之后“以太”被主流物理学家所抛弃。
在相对论建立之后,无论发光以太还是电磁以太都被排除了。但现代物理学的空间观念中仍然保留了某些和以太相似的看法。例如,不存在超距作用;真空不可视为空无一物,而应当看作是许多能量作用的场所。
量子力学的建立更加强了这种观点,因为人们发现,物质的原子以及组成它们的电子、质子和中子等粒子的运动也具有波的属性。波动性已成为物质运动的基本属性的一个方面。
然而人们的认识仍在继续发展。到20世纪中期以后,人们又逐渐认识到真空并非是绝对的空,那里存在着不断的涨落过程(虚粒子的产生以及随后的湮没)。这种真空涨落是相互作用着的场的一种量子效应。今天,理论物理学家进一步发现,真空具有更复杂的性质。真空态代表场的基态,它是简并的,实际的真空是这些简并态中的某一特定状态。今天粒子物理中所观察到的许多对称性的破坏是真空的这种特殊“取向”所引起的(见对称性和守恒律、电弱统一理论)。在这种观点上建立的弱相互作用和电磁相互作用的电弱统一理论已获得很大的成功。
这样看来,机械以太虽然死亡了,但以太的某些精神(不存在超距作用,不存在绝对空虚意义上的真空)仍然活着,并具有旺盛的生命力 。
现代物理学里的以太
洛伦兹认为光速不变,相信以太存在,并不认可相对论。1920年,爱因斯坦在莱顿大学做了一个“以太与相对论”的报告,试图调和相对论和以太论。他指出,狭义相对论虽然不需要以太的概念,但是并未否定以太,而根据广义相对论,空间具有物理性质,在这个意义上,以太是存在的。他甚至说,根据广义相对论,没有以太的空间是无法想像的。爱因斯坦所说的“以太”其实是广义相对论中的度规场,并不具有物质性。
1997年12月,作为“大红移超新星搜索小组”成员的哈佛大学天文学家基尔希纳根据超新星的变化显示,宇宙膨胀速度非但没有在自身重力下变慢,反而在一种看不见的、无人能解释的力量的控制推动下变快。国际广义相对论学界认为,这种现象是和一种叫“暗能量”的尚不太清楚的宇宙内容物有关(具体内容可以参考广义相对论书籍,比如梁灿彬《微分几何入门与广义相对论<上册>》第十章)。
人们经过哈勃空间望远镜观测发现,事实上宇宙是在不断膨胀并且这一观测结果完全与引入“宇宙常数”之前的引力方程的计算结果相符,爱因斯坦引入的“宇宙常数”便被人们遗忘。后来的一次天文探测显示宇宙可能在加速膨胀,预示着宇宙中存在着某种“巨大的能量”,“宇宙常数”被赋予“暗能量”的含义。
当科学家一再通过各种的观测和计算证实,暗能量在宇宙中约占到73%,暗物质约占到23%,普通物质仅占到4%,预示着人们认识到的宇宙只占整个宇宙的4%,而占96%的东西竟然不为我们所知。
关于暗物质和暗能量的客观存在性,李政道先生在其所著的《物理学的挑战》中已经有所讨论。
2005年10月25日,李政道在清华大学演讲中指出:“21世纪初科学技术最大的谜是暗物质和暗能量。暗物质存在于人类已知的物质之外,人们知道它的存在,但不知道它是什么;它的构成也和人类已知的物质不同。在宇宙中,暗物质的能量是人类已知的能量的5倍以上。暗能量更是奇怪,以人类已知的核反应为例,反应前后的物质有少量的质量差,这个差异转化成了巨大的能量。暗能量却可以使物质的质量全部消失,完全转化为能量。宇宙中的暗能量是已知物质能量的14倍以上。”
新世纪之初美国国家研究委员会发布一份题为《建立夸克与宇宙的联系:新世纪11大科学问题》的研究报告,认为暗物质和暗能量应该是未来几十年天文学研究的重中之重,“暗物质”的本质问题和“暗能量”的性质问题在报告所列出的11个大问题中分列为第一、第二位。
19世纪的“以太”观念可能包含了暗物质及暗能量,若与有关引力物理实质的文章中的基本粒子结构新观念对比,就可以看出“以太”观念和21世纪的科学新观念息息相关:其缺陷在于把夸克、磁单极子、引力子、能量子这些暗粒子流笼统的作为“以太”而混为一谈。实际上,随着21世纪人类对暗物质、暗能量研究的开展,“以太说”在某种程度上开始复活,但是这已经不是传统意义上的“以太说”。
最新资讯
传统以太网丢包带来性能瓶颈,0.1%的丢包会导致50%的算力损失。40多年来业界专家探索了很多路径解决以太网丢包,但无一例外都失败了:有通过流控反压来控制流量发送速度,但粗暴的反压机制会频繁停发报文,导致吞吐量极低;在网络应用流量越来越复杂的今天,控速时机也很难把握。华为创造性地将智能无损算法iLossless-DCN引入到网络联接中来,用算法代替专家经验实现实时精准控速,保证网络0丢包,实现规模不变,算力翻番。[1]
参考资料1.超融合数据中心网络CloudFabric 3.0 新以太释放新算力·人民网