多项式除法(数学名词)

多项式除法数学名词

多项式除法是除法的一种类型,俗称长除。适用于整式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中兼用了乘法和减法。是代数中的一种算法,用一个同次或低次的多项式去除另一个多项式。是常见算数技巧长除法的一个推广版本。它可以很容易地手算,因为它将一个相对复杂的除法问题分解成更小的一些问题。

中文名

多项式除法

外文名

Polynomial division

属性

多项式

性质

算法

多项式

除以多项式一般用竖式进行演算

一般步骤

多项式除法示例

多项式除以多项式的一般步骤:

多项式除以多项式一般用竖式进行演算

(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.

(2)用被除式的第一项去除除式的第一项,得商式的第一项.

(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.

(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式。[1]

整除

如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除。

应用

多项式的因式分解

有时某个多项式的一或多个根已知,可能是使用有理根定理(Rational root theorem)得到的。如果一个次多项式的一个根已知,那么可以使用多项式长除法因式分解为的形式,其中是一个次的多项式。简单来说,就是长除法的商,而又知是的一个根、余式必定为零。

相似地,如果不止一个根是已知的,比如已知和这两个,那么可以先从中除掉线性因子得到,再从中除掉,以此类推。或者可以一次性地除掉二次因子。

使用这种方法,有时超过四次的多项式的所有根都可以求得,虽然这并不总是可能的。例如,如果有理根定理(Rational root theorem)可以用来求得一个五次方程的一个(比例)根,它就可以被除掉以得到一个四次商式;然后使用四次方程求根的显式公式求得剩余的根。

寻找多项式的切线

多项式长除法可以用来在给定点上查找给定多项式的切线方程。如果R(x)是P(x)/(x-r)2的余式——也即,除以x2-2rx+r2——那么在x=r处P(x)的切线方程是y=R(x),不论r是否是P(x)的根。

参考资料

1.多项式除以多项式 多项式除法怎么算·天奇生活

标签: 多项式除法