风能资源(人类可利用的自然界风能)

风能资源人类可利用的自然界风能

人类可利用的自然界风能为风能资源。风能是空气水平运动产生的动能,是地球上的一种自然资源。它本质上来源于太阳辐射造成的地球大气的运动,因此它属广义的太阳能的一种,又由于其有“周而复始,可以再生”的特点,故又归属于“可再生能源”。

风能资源,是一种清洁的可再生能源,是指由太阳辐射地球表面受热不均,引起大气层中受热不均匀,从而使空气沿着水平方向运动,空气流动所形成的动能。是太阳能的一种转化形式。科学、准确地估算我国风能潜力及其空间分布是国家对风能资源开发中一项极其重要的基础性工作。

中文名

风能资源

外文名

wind energy resources

特点

呈现地区的不均衡性

风能密度

100W/m2

中国的风能资源

我国幅员辽阔,海岸线长,风能资源比较丰富。据国家气象局估算,全国风能密度为100W/m2,风能资源总储量约1.6X105MW,特别是东南沿海及附近岛屿、内蒙古和甘肃走廊、东北、西北、华北和青藏高原等部分地区,每年风速在3m/s以上的时间近4000h左右,一些地区年平均风速可达6~7m/s以上,具有很大的开发利用价值。有关专家根据全国有效风能密度、有效风力出现时间百分率,以及大于等于3m/s和6m/s风速的全年累积小时数,将我国风能资源划分为如下几个区域。

1、东南沿海及其岛屿,为我国最大风能资源区。这一地区,有效风能密度大于、等于200W/m2的等值线平行于海岸线,沿海岛屿的风能密度在300W/m2以上,有效风力出现时间百分率达80~90%,大于、等于8m/s的风速全年出现时间约7000~8000h,大于、等于6m/s的风速也有4000h左右。但从这一地区向内陆,则丘陵连绵,冬半年强大冷空气南下,很难长驱直下,夏半年台风在离海岸50km时风速便减少到68%。所以,东南沿海仅在由海岸向内陆几十公里的地方有较大的风能,再向内陆则风能锐减。在不到100km的地带,风能密度降至50W/m2以下,反为全国风能最小区。但在福建的台山、平潭和浙江的南麂、大陈、嵊泗等沿海岛屿上,风能却都很大。其中台山风能密度为534.4W/m2,有效风力出现时间百分率为90%,大于、等于3m/s的风速全年累积出现7905h。换言之,平均每天大于、等于3m/s的风速有21.3h,是我国平地上有记录的风能资源最大的地方之一。

2、内蒙古和甘肃北部,为我国次大风能资源区。这一地区,终年在西风带控制之下,而且又是冷空气入侵首当其冲的地方,风能密度为200~300W/m2,有效风力出现时间百分率为70%左右,大于、等于3m/s的风速全年有5000h以上,大于、等于6m/s的风速在2000h以上,从北向南逐渐减少,但不象东南沿海梯度那么大。风能资源最大的虎勒盖地区,大于、等于3m/S和大于、等于6m/s的风速的累积时数,分别可达7659h和4095h。这一地区的风能密度,虽较东南沿海为小,但其分布范围较广,是我国连成一片的最大风能资源区。

3、黑龙江和吉林东部以及辽东半岛沿海,风能也较大。风能密度在200W/m2以上,大于、等于3m/s和6m/s的风速全年累积时数分别为5000~7000h和3000h。

4、青藏高原、三北地区的北部和沿海,为风能较大区。这个地区(除去上述范围),风能密度在150~200W/m2之间,大于、等于3m/s的风速全年累积为4000~5000h,大于、等于6m/s风速全年累积为3000h以上。青藏高原大于、等于3m/s的风速全年累积可达6500h,但由于青藏高原海拔高,空气密度较小,所以风能密度相对较小,在4000m的高度,空气密度大致为地面的67%。也就是说,同样是8m/s的风速,在平地为313.6W/m2,而在4000m的高度却只有209.3W/m2。所以,如果仅按大于、等于3m/s和大于、等于6m/s的风违的出现小时数计算,青藏高原应属于最大区,而实际上这里的风能却远较东南沿海岛屿为小。从三北北部到沿海,几乎连成一片,包围着我国大陆。大陆上的风能可利用区,也基本上同这一地区的界限相一致。

5、云贵川,甘肃、陕西南部,河南、湖南西部,福建、广东、广西的山区,以及塔里木盆地,为我国最小风能区。有效风能密度在50W/m2以下,可利用的风力仅有20%左右,大于、等于3m/s的风速全年累积时数在2000h以下,大于、等于6m/s的风速在15Oh以下。在这一地区中,尤以四川盆地和西双版纳地区风能最小,这里全年静风频率在60%以上,如绵阳为67%,巴中为60%,阿坝为67%,恩施为75%,德格为63%,耿马孟定为72%,景洪为79%。大于、等于3m/s的风速全年累积仅300h,大于、等于6m/s的风速仅20h。所以,这一地区除高山顶和峡谷等特殊地形外,风能潜力很低,无利用价值。

6、在4和5地区以外的广大地区,为风能季节利用区。有的在冬、春季可以利用,有的在夏、秋季可以利用。这一地区,风能密度在50~100W/m2之间,可利用风力为30~40%,大于、等于3m/s的风速全年累积在2000~4000h,大于、等于6m/s的风速在1000h左右。下面介绍一下国家气象局的有关专家关于我国风能区划的划分意见。采用三级区划指标体系。第一级区划指标:主要考虑有效风能密度的大小和全年有效累积小时数。将年平均有效风能密度大于200W/m2、3~20m八风速的年累积小时数大于500Oh的划为风能丰富区,用“Ⅰ”表示;将150~200W/m2、3~20m/s风速的年累积小时数在3000~5000h的划为风能较丰富区,用“Ⅱ”表示;将50~150W/m2、3~20m/s风速的年累积小时数在2000~3000h的划为风能可利用区,用“Ⅲ”表示;将50W/m2以下、3~20m/s风速的年累积小时数在2000h以下的划为风能贫乏区,用“Ⅳ”表示。在代表这四个区的罗马数字后面的英文字母,表示各个地理区域。

第二级区划指标:主要考虑一年四季中各季风能密度和有效风力出现小时数的分配情况。利用1961~1970年间每日4次定时观测的风速资料,先将483个站风速大于、等于3m/s的有效风速小时数点成年变化曲线。然后,将变化趋势一致的归在一起,作为一个区。再将各季有效风速累积小时数相加,按大小次序排列。这里,春季指3~5月,夏季指6~8月,秋季指9~11月,冬季指12、1、2月。分别以1、2、3、4表示春、夏、秋、冬四季。如果春季有效风速(包括有效风能)出现小时数最多,冬季次多,则用“14”表示;如果秋季最多,夏季次多,则用“32”表示;其余依此类推。

第三级区划指标:风力机最大设计风速一般取当地最大风速。在此风速下,要求风力机能抵抗垂直于风的平面上所受到的压强。使风机保持稳定、安全,不致产生倾斜或被破坏。由于风力机寿命一般为20~30年,为了安全,我们取30年一遇的最大风速值作为最大设计风速。根据我国建筑结构规范的规定,“以一般空旷平坦地面、离地10m高、30年一遇、自记10min平均最大风速”作为进行计算的标准。计算了全国700多个气象台、站30年一遇的最大风速。按照风速,将全国划分为4级:风速在35~40m/s以上(瞬时风速为50~60m/s),为特强最大设计风速,称特强压型;风速30~35m/s(瞬时风速为40~50m/s),为强设计风速,称强压型;风速25~30m/s(瞬时风速为30~40m/s),为中等最大设计风速,称中压型;风速25m/s以下,为弱最大设计风速,称弱压型。4个等级分别以字母a、b、c、d表示。根据上述原则,可将全国风能资源划分为4个大区、30个小区。

各区的地理位置如下:

Ⅰ区:风能富丰区ⅠA34a—东南沿海及台湾岛屿和南海群岛秋冬特强压型。ⅠA21b—海南岛南部夏春强压型。ⅠA14b—山东、辽东沿海春冬强压型。ⅠB12b—内蒙古北部西端和锡盟春夏强压型。ⅠB14b—内蒙古阴山到大兴安岭以北春冬强压型。ⅠC13b-c—松花江下游春秋强中压型。

Ⅱ区:风能较丰富区ⅡD34b—东南沿海(离海岸20~50km)秋冬强压型。ⅡD14a—海南岛东部春冬特强压型。ⅡD14b—渤海沿海春冬强压型。ⅡD34a—台湾东部秋冬特强压型。ⅡE13b—东北平原春秋强压型。ⅡE14b—内蒙古南部春冬强压型。ⅡE12b—河西走廊及其邻近春夏强压型。ⅡE21b—新疆北部夏春强压型。ⅡF12b—青藏高原春夏强压型。

Ⅲ区:风能可利用区ⅢG43b—福建沿海(离海岸50~100km)和广东沿海冬秋强压型。ⅢG14a—广西沿海及雷州半岛春冬特强压型。ⅢH13b——大小兴安岭山地春秋强压型。ⅢI12C—辽河流域和苏北春夏中压型。ⅢI14c—黄河、长江中下游春冬中压型。ⅢI31c—湖南、湖北和江西秋春中压型。ⅢI12c—西北五省的一部分以及青藏的东部和南部春夏中压型。ⅢI14c—川西南和云贵的北部春冬中压型。

Ⅳ:风能欠缺区ⅣJ12d—四川、甘南、陕西、鄂西、湘西和贵北春夏弱压型。ⅣJl4d—南岭山地以北冬春弱压型。ⅣJ43d—南岭山地以南冬秋弱压型。ⅣJ14d—云贵南部春冬弱压型。ⅣK14d—雅鲁藏布江河谷春冬弱压型。ⅣK12c—昌都地区春夏中压型。ⅣL12c—塔里木盆地西部春夏中压型。

中国风力发电发展规划设想

1中国风能资源储量及其分布

1.1储量中国气象科学研究院根据全国900多个气象站的历年平均风功率密度绘制全国年平均风功率密度分布图。该图反映了全国风能资源分布状况,以及各个地区风能资源潜力的多少。全国风能资源储量估算值是指离地10m高度层上的风能资源量,而非整层大气或整个近地层内的风能量。全国的储量是使用求积仅逐省量取了年平均风功率密度200W/m²的面积后,计算出每一省的风能储量。中国10m高度层的风能总储量为32.26亿kw,这个储量称作“理论可开发总量”。实际可供开发的量按上述总量的1/10估计,并考虑风能转换装置风轮的实际扫掠面积,再乘以面积系数0.785(即lin直径的圆面积是边长1m的正方形面积的0.785倍),得到中国陆地10m高度层实际可开发的风能储量为2.53亿kw。2000年全国电力装机规模约为3亿kw,略高于估算的全国离地10m高实际可开发的风能资源储量,这表明我国风能资源非常丰富。但是必须进行风能资源详查,探明具有经济开发价值的装机容量。另外,中国东部沿海地区水深2~15m的海域面积非常巨大,海上风能资源测量必须着手进行。由于海上风速比陆上更高,湍流更小,更接近中国东部电力负荷中心,因而中国海上风电开发前景更加广阔。

1.2分布在中国,风能资源丰富的地区主要集中在北部、西北和东北的草原、戈壁滩以及东部、东南部的沿海地带和岛屿上。这些地区缺少煤炭及其他常规能源,并且冬春季节风速高,雨水少;夏季风速小,降雨多,风能和水能具有非常好的季节补偿。另外在中国内陆地区,由于特殊的地理条件,有些地区具有丰富的风能资源,适合发展风电,比如江西省都阳湖地区以及湖北省通山地区。

2中国风电发展应考虑的因素

2.1风能资源了解风能资源情况对估算风电场发电量以及评估潜在的效益非常重要。对风电场而言,风电机组年利用小时数最低要求为2000小时,即单机容量为600kw的风电机组年发电量不能低于1200MW心才具有开发价值。当风电场风电机组平均年利用小时数达到2500小时,风电场具有良好的开发价值;当风电机组平均年利用小时数超过3000小时,为优秀风电场。

2.2电网条件当风电装机容量不超过当地电网总容量的10%时,风电不会影响电网的质量。但是由于风的随机性,风电不能调度,因而它也不可能替代常规装机容量以满足负荷要求。风电产生的电量可以替代煤电产生的电量,以便减少污染气体排放。一般风能丰富的风场距离现有电网较远,规划时应考虑接入系统的成本,与电网的发展相协调。

2.3交通风能资源丰富的地区一般都在比较偏远的地区,比如山脊、戈壁滩、草原和海岛等,必须拓宽现有道路并新修部分道路以满足大部件运输,其中有些部件可能超过30m。

2.4经济问题随着技术发展,风电成本逐步降低。但目前中国风电上网电价比煤电等高出0.3~0.4元/kw·h。对一个装机容量为100MW,年发电量为250GW·h的风电场而言,当地电网消费者每年需要多付出0.75~l.00亿元购买风电。虽然这是保护环境的代价,但对那些经济发展缓慢、电网比较小、电价承受能力差的省份和自治区,过多发展风电将会造成严重的负担。

2.5风电机组国产化降低风电成本的方法包括优选场址、规模开发、风电场优化设计和通过设备招标选择机型外,另一个非常重要的方法是降低风电机组成本,因为它占风电场初始投资的比例非常大,约占60~70%。尽量采用国内制造的部件,在达到与进口设备同等质量的条件下。争取成本下降15%,这将大大减小风电和常规煤电电价的差距。

2.6环境问题风力发电不排放任何污染物质,特别是在减排COZ气体方面能起重要作用,应尽可能充分利用风能资源。风电场产生的噪音和景观问题在中国影响很小,因为风电机组离居民点都比较远。

2.7海上风电场海上风能资源丰富而且稳定,欧洲己经建成几个示范海上风电场,取得在海洋中建造风电机组基础和向陆地输电的经验,丹麦制定了建设400万kw海上风电场的规划,有5个装机容量为10万kw到15万kw的海上风电场项目开始实施。中国东部沿海岸上风能源不够丰富,岸外风能潜力很大,应开始对资源储量进行勘测,初选近期有开发价值的场址,为在不久的将来发展海上示范项目做准备。

2.8融资中国已建成的风电场中,许多风电场是利用国家经贸委技改项目贴息贷款以及国外政府提供的软贷款。由于它们贷款利率低,还贷期长,因而还贷期上网电价比较低。将来软贷款逐步减少,使用商业银行贷款利率高,还贷期短,将导致还贷期上网电价比较高,制约风电大规模开发。

2.9社会问题总体说来,社会对风电和其它可再生能源对减排温室效应气体的作用还了解甚少,需要加强宣传。随着经济的发展,环境保护的要求日益严格,有关立法机构应制定具体鼓励再生能源发展的法律,在全国范围体现公平负担的原则,分摊风电与常规火电的价差。

2.10政策初期激励风电发展的政策是行政性的,如允许并网、收购全部电量、还本付息电价、网内摊销等,使业主有可能向银行贷款建风电场,风电与常规火电的价差甚至由电力局系统的利润承担。对风电比较重视的省区政府允许将风电的价差摊到全省的平均销售电价中;但是,相对于风能贫乏的省份,在风能丰富的省份,用户需要支付更多的电价用于风电。目前急需制定政策,制定出按污染排放量分配比例,由全国所有省区共同承担。同时各省应根据当地风能资源条件制定风电最高上网电价,以利于有效开发风能资源,降低成本。

3.21世纪初中国风电发展规划设想

中国从1986年建立第一个风电场起到1994年电力部出台风电并网和还本付息电价的规定,风电场是利用本国政府拨款或外国政府赠款建设的,主要对风电并网技术的可行性进行示范。在1995年由电力部主办的北京国际风能会议上,正式提出2000年底我国风电装机规模为1000MW的目标。目前各省电力公司已经成为投资风电项目、成立风电公司的主体。融资方式有来自国家经贸委“双加工程”的贴息贷款,有来自许多国家的优惠软贷款以及一些商业银行贷款。全国风电装机容量从1994年的29W增加到2000年底的344MW。与1995年电力部提出的目标相比,少了许多。从许多有关的省电力公司那里得知,到2000年底可以获得资金的项目达到960MW,说明资金短缺不是中国风电发展的障碍。只有对环境保护更加重视,制定更多激励政策,我国风电才能在ZI世纪大规模发展。目前,风电上网电价高于煤电部分只在省级范围内分担,风电应该在那些风能资源丰富、火电厂温室气体排放多、经济发展快,电价承受能力强的地区优先发展,比如广东、福建和浙江省。但是目前这些地方市场经济比较发展,电价高的风电得不到应有的重视,而电网平均电价很低的新疆和内蒙自治区风电却发展快。由于当地电网容量和负荷小、电价承受能力差,再扩大风电规模从总体上看对当地经济发展不利,这种状况应当改变。

在2001年到2005年期间,应加强东北三省、内蒙东部、河北北部及整个沿海陆地岛屿的风能资源详查,找出能够建设4000MW风电场的场址,并开始对岸外海上风能资源进行普查,找到几个可以建设示范海上风电场的场址。政府将鼓励采用国产机组建设风电场的业主,以贴息的方式补偿国产机组示范风电场的风险,开拓市场拉动国内总装和零部件制造业,提供批量生产和改进产品的机会,降低机组成本。在现行政策条件下,到2005年底全国装机预计达到1500MW。在2006年到2010期间,国内制造的整机和零部件成本较低,在新增容量中将占70%,如果减排温室气体的环境保护压力加大,国家出台全社会分摊风电价差的政策,全国风电装机规模也许能达到3000MW~5000MW,并建造一座海上示范风电场。风电以其良好的环境效益,逐步降低的发电成本,必将成为ZI世纪中国重要的电

我国风能资源的形成及其分布

朱瑞兆中国气象科学研究院

我国风能资源的分布与天气气候背景有着非常密切的关系,从我国风能资源分布图上可以清楚看出,我国风能资源丰富和较丰富的地区主要分布在两个大带里。

1.三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上。这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关。

冬季(12-2月)整个亚州大陆完全受蒙古高压控制,其中心位置在蒙古人民共和国的西北部,从高压中不断有小股冷空气南下,进入我国。同时还有移动性的高压(反气旋)不时的南下,这类高压大致从四条路经侵入我国。一条是源于俄罗斯的新地岛,经西北利亚及蒙古人民共和国进入我国,由于是西北向称为西北路径;第二条源自冰岛以南洋面,经俄罗斯、哈萨克斯坦,基本上是自西向东进入我国新疆,称为西路经;第三条源自俄罗斯的太梅尔半岛,自北向南经西北利亚、蒙古人民共和国进入我国,称为北路经;第四条源于俄罗斯贝加尔湖的东西伯利亚地区,进入我国东北及华北一带,称为东北路经。这四条路经除东北路经外,一般都要经过蒙古人民共和国,当经过时蒙古高压得到新的冷高压的补充和加强,这种高压往往可以迅速南下,进入我国。

由于欧亚大陆面积广大,北部地区气温又低,是北半球冷高压活动最频繁的地区,而我国地处欧亚大陆东岸,正是冷高压南下必经之路。三北地区是冷空入侵我国的前沿,一般在冷高压前锋称为冷锋,在冷锋过境时,在冷锋后面200km附近经常可出现大风就可造成一次6~10级(10.8~24.4m/s)大风。对风能资源利用来说,就是一次可以有效利用的高质量大风。

从三北地区向南,由于冷空气从源地长途跋涉,到达我国黄河中下游再到长江中下游,地面气温有所升高,使原来寒冷干燥气流性质,逐渐改变为较冷湿润的气流性质,(称为变性)也就是冷空气逐渐的变暖,这时气压差也变小,所以,风速由北向南逐渐的减小。

我国东部处于蒙古高压的东侧和东南侧,所以盛行风向都是偏北风,只视其相对蒙古高压中心的位置不同而实际偏北的角度有所区别。三北地区多为西北风,秦岭黄河下游以南的广大地区,盛行风向偏于北和东北之间。

春季(3~5月)是由冬季到夏季的过渡季节,由于地面温度不断升高,从4月开始,中、高纬度地区的蒙古高压强度已明显的减弱,而这时印度低压(大陆低压)及其向东北伸展的低压槽,已控制了我国的华南地区,与此同时,太平洋副热带高压也由菲律宾向北逐渐侵入我国华南沿海一带,这几个高、低气压系统的强弱、消长却给我国风能资源有着重要的作用。

在春季这几种气流在我国频繁的交绥。春季是我国气旋活动最多的季节,特别是我国东北及内蒙一带气旋活动频繁,造成内蒙和东北的大风和沙暴天气。同样地江南气旋活动也较多,但造成的却是春雨和华南雨季。这也是三北地区风资源较南方丰富的一个主要的原因。全国风向已不如冬季风那样稳定少变,但仍以偏北风占优势,但风的偏南分量显著的增加。

夏季(6~8月)东亚地面气压分布开势与冬季完全相反。这时中、高纬度的蒙古高压向北退缩的已不清楚,相反地印度低压继续发展控制了亚州大陆,为全年最盛的季节。大平洋副热带高压等时也向北扩展和向大陆西伸。可以说东亚大陆夏季的天气气候变化基本上受这两个环流系统的强弱和相互作用所制约。

随着太平洋副热带高压的西伸北跳,我国东部地区均可受到它的影响,在此高压的西部为东南气流和西南气流带来了丰富的降水,但由于高、低压间压差小,风速不大,夏季是全国全年风速最小的季节。

夏季大陆为热低压、海上为高压,高、低压间的等压线在我国东部几呈南北向分布的型式,所以夏季风盛行偏南风。

秋季(9~11月),是由夏季到冬季的过渡季节,这时印度低压和太平洋高压开始明显衰退,而中高纬度的蒙古高压又开始活跃起来。由于冬季风来的迅速,且稳定维持,不像春季中夏季风代表冬季风那种来回进退的型式。此时,我国东南沿海已逐渐受到蒙古高压边缘的影响,华南沿海由夏季的东南风转为东北风。三北地区秋季已确立了冬季风的形势。各地多为稳定的偏北风,风速开始增大。

2.沿海及其岛屿地丰富带。年有效风能功率密度在200瓦/米2以上,将风能功率密度线平行于海岸线,沿海岛屿风能功率密度在500瓦/米2以上如台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、东沙等。可利用小时数约在7000-8000小时,这一地区特别是东南沿海,由海岸向内陆是丘陵连绵,所以风能丰富地区仅在海岸50km之内,再向内陆不但不是风能丰富区,反而成为全国最小风能区,风能功率密度仅50瓦/米2左右,基本上是风能不能利用的地区。

沿海风能丰富带,其形成的天气气候背景与三北地区基本相同,所不同的是海洋与大陆两种截然不同的物质所组成,二者的辐射与热力学过程都存在着明显的差异。大气与海洋间的能量交换大不相同。海洋温度变化慢,具有明显的热隋性,大陆温度变化快,具有明显的热敏感性,冬季海洋较大陆温暖,夏季较大陆凉爽,这种海陆温差的影响,在冬季每当冷空气到达海上时风速增大,再加上海洋表面平滑,摩擦力小,一般风速比大陆增大2-4m/s。

东南沿海又受台湾海峡的影响,每当冷空气南下到达时,由于狭管效应的结果使风速增大,这里是我国风能资源最佳的地区。

在沿海每年夏秋季节都可受到热带气旋的影响,当热带气旋风速达到8级(17.2m/s)以上时,称为台风。台风是一种直径1000km左右的圆形气旋,中心气压极低,台风中心0-30km范围内是台风眼,台风眼中天气较好,风速很小。在台风眼外壁天气最为恶劣,最大破坏风速就出现在这个范围内,所以一般只要不是在台风正面直接登陆的地区,风速一般小于10级(26m/s),它的影响平均有800~1000km的直经范围,每当台风登陆后我国沿海可以产生一次大风过程,而风速基本上在风力机切出风速范围之内。是一次满发电的好机会。

登陆台风每年在我国有11个,而广东每年登陆台风最多为3.5次,海南次之2.1次,台湾1.9次,福建1.6次,广西、浙江、上海、江苏、山东、天津、辽宁合计仅1.7次,由此可见,台风影响的地区由南向北递减、对风能资源来说也是南大北小。由于台风登陆后中心气压升高极快,再加上东南沿海东北~西南走向的山脉重叠,所以形成的大风仅在距海岸几十公里内。风能功率密度由300w/m2锐减到100w/m2以下。

综观上述,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿。相对内陆来说这里形成了我国风能丰富带。由于台湾海峡的狭管效应的影响,东南沿海及其岛屿是我国风能最佳丰富区。我国有海岸线18000多公里,岛屿6000多个,这里是风能大有开发利用的前景的地区。

3.内陆风能丰富地区,在两个风能丰富带之外,风能功率密度一般在100w/m2以下,可以利用小时数3000小时以下。但是在一些地区由于湖泊和特殊地形的影响,风能也较丰富,如鄱阳湖附近较周围地区风能就大,湖南衡山、安徽的黄山、云南太华山等也较平地风能为大。但是这些只限于很小范围之内,不像两大带那样大的面积,特别是三北地区面积更大。

青藏高原海拔4000m以上,这里的风速比较大,但空气密度小,如在4000m的空气密度大致为地面的67%,也就是说,同样是8m/s的风速,在平原上风能功率密度为313.6w/m2,而在4000m只为209.9w/m2,而这里年平风速在3~5m/s,所以风能仍属一般地区。

风能资源的科技利用

我国自主研发的免费、可靠的公共风能与气象服务平台——FreeMeso,已上线运行。该平台以MapGIS三维平台为基础,将基础地理数据、遥感影像数据、风功率图谱数据等在同一平台进行融合处理,最终实现了风能数据三维可视化展示、风站宏观选址、风暴气象预警预报等功能,为用户提供了直观、实时风能参数,并提供风气象预警服务。可对风电场建设前期的宏观选址进行筛选、效益评价等管理。在风机选址过程中,大规模风机的科学布设最为关键。该平台可自动量算风机之间的距离,并根据后台设置的安全距离参数,对排布、选址的合理性进行自动验证,如果距离超出安全范围,则给出提示或建议,确保最佳选择方案。系统还可以自动获取添加风机位置的经纬度、高程、以及对应高度的风速、年发电量等信息,并根据添加的相关数据,自动计算出风场的建设成本,同时计算出年发电总量、年折减后发电总量和年总收益,最终推算出所规划风场20年的总收益,为建设风场提供数据依据和科学的指导。

参考资料

1. 什么是风能资源?·新能源网

标签: 风能资源