定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
>有理数乘法法则(有理数乘法法则教案)
概况:有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
1)、有理数加法法则
1.同号两数相加,把绝对值相加,所得值符号不变。
如-1+(-1)=-|1+1|=-2、1.1+1.1=2.2
2.异号两数相加,若绝对值不等,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。若绝对值相等即互为相反数的两个数相加得0。
如-1+2=+|2-1|=1
2+(-3)=-|3-2|=-1
-3.2+3.2=0
3.一个数同0相加,仍得这个数。3.14+0=3.14
注意:
一是确定结果的符号;二是求结果的绝对值。在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0。
从而确定用那一条法则。在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了。
多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。
2)、有理数减法法则
减去一个数,等于加这个数的相反数。
两变:减法运算变加法运算,减数变成它的相反数做加数。
一不变:被减数不变。
可以表示成:a-b=a+(-b)。
3)、有理数乘法法则
1.两数相乘,同号为正,异号为负,并把绝对值相乘。
2.任何数同0相乘,都得0。
3.乘积为1的两个有理数互为倒数。
4.几个不是0的数相乘,负因数得个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
5.几个数相乘,如果其中有因数为0,那么积等于0。
4)、有理数除法则
1.除以一个不等于0的数,等于乘这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除。
3.0除以任何一个不等于0的数,都得0。
注意:
0不能做除数。
5)混合运算
有理数的加减乘除混合运算,如无括号指出先做什么运算,按照“先乘除,后加减”的顺序进行,如果是同级运算,则按照从左到右的顺序依次计算。
(1)按有理数的定义:
正整数
整数{零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{零
负整数
负数{
负分数
答案:ADABDDB