磁流体(是一种新型的功能材料)

磁流体是一种新型的功能材料

磁流体又称磁性液体、铁磁流体或磁液,是一种新型的功能材料,它既具有液体的流动性又具有固体磁性材料的磁性。是由直径为纳米量级(10纳米以下)的磁性固体颗粒、基载液(也叫媒体)以及界面活性剂三者混合而成的一种稳定的胶状液体。该流体在静态时无磁性吸引力,当外加磁场作用时,才表现出磁性,正因如此,它才在实际中有着广泛的应用,在理论上具有很高的学术价值。用纳米金属及合金粉末生产的磁流体性能优异,可广泛应用于各种苛刻条件的磁性流体密封、减震、医疗器械、声音调节、光显示、磁流体选矿等领域。

中文名

磁流体

英文名

Magnetic fluids

简介

又称磁性液体、铁磁流体或磁液

类别

电磁

发展简史

磁流体

1832年法拉第首次提出有关磁流体力学问题。他根据海水切割地球磁场产生电动势的想法,测量泰晤士河两岸间的电位差,希望测出流速,但因河水电阻大、地球磁场弱和测量技术差,未达到目的。1937年哈特曼根据法拉第的想法,对水银在磁场中的流动进行了定量实验,并成功地提出粘性不可压缩磁流体力学流动(即哈特曼流动)的理论计算方法。

1940~1948年阿尔文提出带电单粒子在磁场中运动轨道的“引导中心”理论、磁冻结定理、磁流体动力学波(即阿尔文波)和太阳黑子理论,1949年他在《宇宙动力学》一书中集中讨论了他的主要工作,推动了磁流体力学的发展。1950年伦德奎斯特首次探讨了利用磁场来保存等离子体的所谓磁约束问题,即磁流体静力学问题。受控热核反应中的磁约束,就是利用这个原理来约束温度高达一亿度量级的等离子体。

然而,磁约束不易稳定,所以研究磁流体力学稳定性成为极重要的问题。1951年,伦德奎斯特给出一个稳定性判据,这个课题的研究至今仍很活跃。

制备方法

磁流体制备方法主要有研磨法,解胶法,热分解法,放电法等。

(1)碾磨法。即把磁性材料和活性剂、载液一起碾磨成极细的颗粒,然后用离心法或磁分离法将大颗粒分离出来,从而得到所需的磁流体。这种方法是最直接的方法,但很难得到300nm以下颗粒直径的磁流体。

(2)解胶法。是铁盐或亚铁盐在化学作用下产生Fe3O4或γ-Fe2O3,然后加分散剂和载体,并加以搅拌,使其磁性颗粒吸附其中,最后加热后将胶体和溶液分开,得到磁流体。这种方法可得到较小颗粒的磁流体,且成本不高,但只使用于非水系载体的磁流体的制作。

(3)热分解法。是将磁性材料的原料溶入有机溶剂,然后加热分解出游离金属,再在溶液中加入分散剂后分离,溶入载体就得到磁流体。

(4)蒸着法。是在真空条件下把高纯度的磁性材料加热蒸发,蒸发出来的微粒遇到由分散剂和载体组成的地下液膜后凝固,当下地液膜和磁性微粒运动到下地液中,混合均匀就得到磁流体。这种方法得到的磁流体微粒很细,一般在2-10nm的粒子居多。

(5)放电法。其原理与电火花加工相仿,是在装满工作液(经常与载体相同)的容器中将磁性材料粗大颗粒放在2个电极之间,然后加上脉冲电压进行电火花放电腐蚀,在工作液中凝固成微小颗粒,把大颗粒滤去后加分散剂即可得到磁流体。

研究方法

等离子体的密度范围很宽。对于极其稀薄的等离子体,粒子间的碰撞和集体效应可以忽略,可采用单粒子轨道理论研究等离子体在磁场中的运动。对于稠密等离子体,粒子间的碰撞起主要作用,研究这种等离子体在磁场中的运动有两种方法。一是统计力学方法,即所谓等离子体动力论,它从微观出发,用统计方法研究等离子体在磁场中的宏观运动;二是连续介质力学方法即磁流体力学,把等离子体当作连续介质来研究它在磁场中的运动。

磁流体力学是在非导电流体力学的基础上,研究导电流体中流场和磁场的相互作用。进行这种研究必须对经典流体力学加以修正,以便得到磁流体力学基本方程组。

磁流体力学基本方程组具有非线性且包含方程个数又多,所以求解困难。但在实际问题中往往不需要求最一般形式的方程组的解,而只需求某一特殊问题的方程组的解。一般应用量纲分析和相似律求得表征一个物理问题的相似准数,并简化方程,即可得到有实用价值的解。

磁流体力学相似准数有雷诺数、磁雷诺数、哈特曼数、马赫数、磁马赫数、磁力数、相互作用数等。求解简化后的方程组不外是分析法和数值法。利用计算机技术和计算流体力学方法可以求解较复杂的问题。

实际应用

磁流体力学主要应用于三个方面:天体物理、受控热核反应和工业。

宇宙中恒星和星际气体都是等离子体,而且有磁场,故磁流体力学首先在天体物理、太阳物理和地球物理中得到发展和应用。当前,关于太阳的研究课题有:太阳磁场的性质和起源,磁场对日冕、黑子、耀斑的影响。此外还有:星际空间无作用力场存在的可能性,太阳风与地球磁场相互作用产生的弓形激波,新星、超新星的爆发,地球磁场的起源,等等。

磁流体力学在受控核反应方面的应用,有可能使人类从海水中的氘获取巨大能源。对氘、氚混合气来说,要求温度达到5000万到1亿度,并对粒子密度和约束时间有较高的要求。而使用环形磁约束装置在受控热核反应的研究中显出较好的适用性和优越性。

磁流体力学除了与开发和利用核聚变能有关外,还与磁流体发电密切联系。磁流体发电的原理是用等离子体取代发电机转子,省去转动部件,这样可以把普通火力发电站或核电站的效率提高15~20%,甚至更高,既可节省能源,又能减轻污染。

飞行器再入大气层时,激波、空气对飞行器的摩擦,使飞行器的表面空气受热而电离成为等离子体,因此利用磁场可以控制对飞行器的传热和阻力。但由于磁场装置过重,这种设想尚未能实现。

此外,电磁流量计、电磁制动、电磁轴承理论、电磁激波管等也是磁流体力学在工业应用上所取得的成就。

磁流体发电

磁流体发电是一种新型的高效发电方式,其定义为当带有磁流体的等离子体横切穿过磁场时,按电磁感应定律,由磁力线切割产生电;在磁流体流经的通道上安装电极和外部负荷连接时,则可发电。

为了使磁流体具有足够的电导率,需在高温和高速下,加上钾、铯等碱金属和加入微量碱金属的惰性气体(如氦、氩等)作为工质,以利用非平衡电离原理来提高电离度。前者直接利用燃烧气体穿过磁场的方式叫开环磁流体发电,后者通过换热器将工质加热后再穿过磁场的叫闭环磁流体发电。

磁流体发电本身的效率仅20%左右,但由于其排烟温度很高,从磁流体排出的气体可送往一般锅炉继续燃烧成蒸汽,驱动汽轮机发电,组成高效的联合循环发电,总的热效率可达50%~60%,是目前正在开发中的高效发电技术中最高的。同样,它可有效地脱硫,有效地控制NOx的产生,也是一种低污染的煤气化联合循环发电技术。

磁流体密封

磁流体密封装置是由不导磁座、轴承、磁极、永久磁铁、导磁轴、磁流体组成,在磁场的作用下,使磁流体充满环形空间,建立起一系列“O型密封圈”,从而达到密封的效果。

参考资料

1.磁流体概述·鹏芃科艺

标签: 磁流体